
NEXTSTEP In Focus, Summer 1993 (Volume 3, Issue 3).
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

The Tough Stuff
Alan M. Marcum and Marc Majka

Some things in NetInfo aren't obvious, even with the information we've
presented so far. Other things have a subtlety that is critically important.
This article addresses some of those issues: making changes that aren't
as simple as you'd think, fixing mistakes in trusted_networks, starting
NetInfo by hand, figuring out where client processes are bound,
understanding console messages, backing up the NetInfo database, and
recovering from disasters.

MAKING ªSIMPLEº CHANGES THAT AREN'T SO SIMPLE
A few changes to a NetInfo domain that seem simple and straightforward
really aren't. Fouling up some of these changes can render a database or
an entire domain unusable. Here's how to make these changes correctly.

Changing the master server for a domain

To change a master server of a domain you must make sure that all
clones in the domain reference the new master. The name of the master
server is stored in the domain's root directory, as the value of the master
property. The format of this value is machine/tag, where machine is the
name of the computer running the master server for the domain, and tag
is that server's database tag.

For example, at Rhino Aviation, to change the
root domain master from super21/Rhino to sabre/Rhino, you'd need to
follow these steps:
1. Ensure that a clone of the domain is running on sabre. At Rhino, there

is an appropriate clone. If there weren't, you'd create a clone with, for
example, NetInfoManager.

2. Make certain that all the server processes for the domain are up and
running.

3. If you created a new clone in Step 1, ensure that the new clone has all
the data from the domain. In Release 3, a newly built clone database
usually isn't completely filled until about 30 minutes after it's initially
built, or until the computer running the clone is rebooted.

4. Change the value of the master property from super21/Rhino to
sabre/Rhino.

5. Wait for the change of the master property's value to propagate to all
the clones. Typically, this takes only a few minutes. To verify that the
change has been propagated, examine the root directory of each
database in the domain, using tagged domain specifications to
reference the specific database.

6. Reboot all computers in the domain.
This procedure ensures that all the clones of the domain have the correct
notion of the master. If you don't wait for the change to propagate, clones
with the old information never receive new updates.

Changing any computer's name

By convention, each local domain in the domain hierarchy has the same
name as the server computer for the domain. This is because of the value
of the serves property in the parent of the computer's local domain. If

you want to change a computer's name, it's helpful to make the
computer name and the domain name match.
For example, assume you want to change the name of the computer
chaparral to chap. chaparral's local domain is a child of /info. (See
Figure 2 in ªA Typical NetInfo Setup.º) Before the change, /info has a
/machines/chaparral directory, which in turn has a serves property
containing chaparral/local. If you change just the value of that
directory's name, the computer and domain names won't matchÐthe
computer will be chap and the domain name will be /info/chaparral.
While this isn't technically an error, it can be confusing.
So, when you change a computer name, also change the serves property
in the parent domain. Also change the name in all domains it appears in
and places it's used, like /mounts and /locations/ntp.

Changing a server computer's Internet address

Unless you have a two-level domain hierarchy, the computers providing
NetInfo services are known both in the domain whose services are
provided and in that domain's parent domain. So, if you change the
Internet address of such a server computer, follow the guidelines for
changing a computer's name, and be sure to change the Internet address
in all the domains referencing the computer.

Changing the Internet address of the master server's computer

Changing the Internet address of the master server's computer requires a
procedure nearly identical to that for changing the domain's master. You
must make the change, wait for the change to propagate to all the clones
of the domain, then reboot all the computers in the domain. Follow the
guidelines for changing a computer's name and Internet address.

FIXING TRUSTED_NETWORKS MISTAKES
The trusted_networks property in the root directory of a domain
restricts access to the information in a domain based on the requesting
computer's Internet address (see the NEXTSTEP Network and System
Administration manual). If you mistype the value of the
trusted_networks property, it's possible that almost no computer on the
network will be able to access the affected domain.
However, the root user on the computer running the master server for a
domain can always access and modify the domain. So if you mistype the
value for a trusted_networks property and can't access the domain,
you can fix the problem as root on the computer running the master
server for the domain.
You might need to reference the domain by tag, to ensure that you're
communicating with the master server. The best way to do this is to use
the loopback Internet address, 127.0.0.1. From the command line, this
looks something like:
niutil -read -t 127.0.0.1/network /

If you're using NetInfoManager, choose the Open by Tag command in the
Domain menu, specifying 127.0.0.1 as the host and network as the tag.
Using the Internet address instead of the name of the computer ensures
that your request won't fail when NetInfo Manager tries to find the name.

STARTING NETINFO BY HAND
Sometimes when you encounter problems during system startup, you can
fix them by booting in single-user mode and starting NetInfo by hand. The
simplest way to do this is to run this command:
sh /etc/rc

Sometimes this hangs, though, and you must execute each step yourself.
Here's how.

Starting, step-by-step

The sequence for starting NetInfo is different in NEXTSTEP Release 3.0
from Release 3.1. Here are the commands for starting NetInfo (including
lookupd) under 3.0:
1. mount -vat 4.3
2. mach_swapon -av
3. syslogd
4. nmserver &
5. portmap
6. nibindd
7. lookupd
Note the ampersand (&) in Step 4. It causes the command to run in the
background.

Here's the sequence for Release 3.1. Include Step 2 only on Intel-based
computers.
1. nmserver -nonet
2. driverLoader a
3. sh /etc/rc.net -h
4. mount -vat 4.3

5. mach_swapon -av
6. syslogd
7. portmap
8. nibindd
9. lookupd

Invoking routing

One thing is missing from both of these sequences: enabling routing. If
you need to enable routing to accomplish what you need to doÐfor
example, if a needed server runs on a computer on another
networkÐinvoke it just before running nibindd in either sequence.
How you invoke routing depends on how you configured it using
HostManager. If you chose dynamic routing, run the command routed -q.
If you chose a specific route, also known as a static route, use the
following command:
route add default address 1

Replace address with the Internet address you specified in HostManager.

Modifying the command sequence

Sometimes you have to modify the startup procedure, so that you stop
short of starting lookupd. You should do this if certain problems appear,
such as if lookupd seems to hang. Other times you'll want to run
nibindd in the background, so that you can retain control of the system if
you have problems running nibindd. For more information on handling
problems like these, see the articles on NetInfo startup and lookupd in
this issue, the troubleshooting information in NEXTSTEP Network and
System Administration, Majka 1992, and Cottle, ªThe Crash of the Master

NetInfo Server,º 1993.
Run the last step in either sequence, lookupd, only if you'll be using
lookupd's services. Frequently, you start NetInfo by hand to fix a NetInfo
problem, and in these cases running lookupd can cause the system to
hang.

DETERMINING WHAT'S BOUND WHERE
An interesting question that's asked frequently regarding NetInfo is, ªTo
which server is a particular computer bound?º Unfortunately, this
question can't really be answered, since computers aren't bound to
NetInfo servers. Rather, processes communicate with NetInfo servers,
and different processes on the same computer can communicate with
different NetInfo server processes for a given domain.
When a netinfod process binds, it remembers the address and tag of its
parent, but doesn't keep a connection with its parent. Only when a
NetInfo client process asks the netinfod for its parent's address and tag
does the netinfod probe to check if its parent is running. It rebinds the
same way it did when it started up, if the probe fails.
You could write a program to ask a netinfod for its parent, but just asking
the question can cause the daemon to rebind. Once binding is complete
there are no network connections left, so it can be difficult to determine
the current bindings.
When a process first connects to a NetInfo server, it starts with the local
domain and climbs the hierarchy by asking for the address and tag of
parent servers on the way up. If it needs to contact a server for a child
domain at some point, it collects a list of all the servers for the child from
the child's parent and connects to the first one that it finds running.
There's no telling which it might contact. But remember that this contact

is established using TCP, which is a connection-oriented protocol. So, the
connection remains in place until the processes involved shut it down,
either voluntarily or forcibly.
By the way: If a client process makes a change to a domain, it
automatically reconnects to the master.

Servers sometimes crash

Another reason it's difficult to know what bindings are in place is that
bindings are dynamic. Even if you're the best system and network
administrator, sometimes a NetInfo server process that's being used by a
client process crashes, or appears to have crashed. Perhaps the server
process is running on a computer on a distant subnet and a backhoe
operator chops the telecommunications cable in two. Perhaps the server's
computer fails. Perhaps a router's power supply blows up. You get the
idea.
When this happens, the client process won't get an answer to its next
request. Eventually, the client will try to find a new server.
When the client first connected to the server, it created a list of all the
servers of the domain by looking through the domain's /machines
directory to find hosts with a serves property of ./tag. The client saves
this list for when its request to its current server times out.The client uses
the list to connect to a serverÐthe same one as before or a new one,
depending on the reasons behind the timeout and the results of the
rebinding.
The NetInfo library

You might think all this contingency planning makes writing NetInfo
clients horribly complicated. And, you'd be rightÐif it weren't for the
NetInfo library. The library takes care of establishing a client's connection,
maintaining that connection, and reconnecting after a timeout.

(Editor's note: An article in a future issue of NEXTSTEP in Focus will
describe the NetInfo library in detail.)
Reconnecting to a server

If a client needs to reconnect to a server, it sends a message using the
manycast technique described in ªNetInfo Binding and Connecting.º The
reconnecting client sends a SunRPC request to each server it discovered
in the initial binding process. The client connects to the first server that
responds.

Where's the nibindd?

Recall that the first step in the binding process is to contact the nibindds
running on all the computers with potential parent servers. The client
makes contact by sending a UDP broadcast of a SunRPC request to the
portmapper. The portmapper forwards the request to the nibindd.
Subsequently, the child domain's netinfod requests the port number for
the nibindd running on the chosen parent computer.
You can examine the information the portmapper has regarding the
SunRPC programs running on a computer, their program numbers and
names, and the ports associated with each program. You use the rpcinfo
command to do this. Here's an example:
sabre [~]-40% rpcinfo -p
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 200100001 1 udp 755 netinfobind
 200100001 1 tcp 757 netinfobind
 100011 1 udp 2606 rquotad
 100001 1 udp 2607 rstat_svc
 100001 2 udp 2607 rstat_svc
 100001 3 udp 2607 rstat_svc
 100008 1 udp 2610 walld

 200100002 1 udp 2611 renderd

(For usage information, see the rpcinfo(8) UNIX manual page.)
In the example above, version 1 of the netinfobind SunRPC program,
program number 200100001, is registered with the portmapper and is
using TCP port 757 and UDP port 755.

Where's the netinfod?

nidomain -l host reports the NetInfo servers running on the specified
computer (see ªNetInfo Binding and Connectingº). Furthermore, it reports
the TCP and UDP port numbers used by each netinfod process. For
example:
sabre-41% nidomain -l mite
tag=local udp=660 tcp=662
tag=network udp=664 tcp=666

Who's talking to whom?

Some clients, such as NetInfoManager, display the address and tag of the
current server. In general, though, there's no way to ask a client about its
connections. We need one more command to determine which
connections are in use: netstat. This command shows the active sockets
for each protocol in use. Figure 1 shows an excerpt from its output.
ranger-103% netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 ranger.3126 Tute.EDU.ftp ESTABLISHED
tcp 0 0 ranger.1023 sabre.login ESTABLISHED
tcp 0 96 ranger.758 ranger.780 ESTABLISHED
tcp 0 0 ranger.780 ranger.758 ESTABLISHED
tcp 0 0 ranger.758 ranger.2720 ESTABLISHED
tcp 0 0 ranger.2720 ranger.758 ESTABLISHED
tcp 0 0 nescorna.3204 mustang.2453 ESTABLISHED

tcp 0 0 ranger.758 ranger.2671 ESTABLISHED
tcp 0 0 ranger.2671 ranger.758 ESTABLISHED
tcp 0 0 ranger.775 cadet.696 ESTABLISHED
tcp 0 0 ranger.3156 cadet.696 ESTABLISHED
tcp 0 0 ranger.768 exec.679 ESTABLISHED
tcp 0 0 ranger.763 cadet.696 ESTABLISHED
udp 0 0 localhost.ntp *.*
udp 0 0 ranger.ntp *.*

Figure 1: Sample netstat output

In the netstat output, three columns are most important: ªProto,º ªLocal
Address,º and ªForeign Address.º ªProtoº is the protocol used for the
connection. ªLocal Addressº is the address of the local side of the
connection; the format is hostname.port. ªForeign Addressº is the address
of the remote side of the connection, using the same format as ªLocal
Address.º If a port is referenced by number instead of name, it's because
no translation from port number to service name was available; generally
this means the port isn't well-known.

Which port for which service?

In the example in Figure 1 there are multiple connections to ranger's
port 758 and cadet's port 696. That means multiple processes are
communicating with some server on those computers over that remote
port.
With ports that aren't well-known, it's pretty much impossible to
determine which service is using the port. In some instances, portmapper
has the information and you can use rpcinfo to obtain it. In other
instances, the port might be used by a netinfod. The question is, how do
you know?
The output from nidomain -l tells you which databases are being served
on a computer, and the port numbers for contacting each server. For

example, here's the output for ranger, cadet, and exec:
ranger [~]-104% nidomain -l
tag=local udp=756 tcp=758
ranger [~]-105% nidomain -l cadet
tag=network udp=694 tcp=696
tag=local udp=693 tcp=695
ranger [~]-106% nidomain -l exec
tag=network udp=676 tcp=678
tag=local udp=675 tcp=677
tag=Rhino udp=677 tcp=679

In the fourth line after the headings in Figure 1, LocalAddress is
ranger.780 and Foreign Address is ranger.758. The output from the first
nidomain -l shows that netinfod local on ranger can be reached over
TCP port 758. These two pieces of informationÐnetstat's indication of a
connection to ranger's TCP port 758 and nidomain's output showing
that netinfod local is using TCP port 758 on rangerÐshow that some
process on ranger has a connection to the local NetInfo server. However,
in general there's no way to know which process it is.

Tools for examining connections

The floppy disk that accompanies printed copies of NEXTSTEP In Focus
contains a program called ni_connections. It's a shell script that displays
the connection information shown above. See the documentation files on
the disk for more information on how to use it.

UNDERSTANDING NETINFO FAILURE AND SLEEPING
MESSAGES
When a NetInfo server that some client is using goes down, and the client
then attempts to get data from the server, you might see any of a
number of messages on the console or in the system log. The table in

Figure 2 shows what they mean.

Message Meaning
netinfo timeout, sleeping The first possibility is that the client attempted to build its

first connection and netinfod local didn't respond. The
second is that the client was already connected to the server
when it failed. When the client requested data from the
server, it waited for two 5-second timeout periods and didn't
get an answer. Either way, once the local NetInfo server
responds, you'll see the "netinfo waking" message.

netinfo failure, sleeping The client of a failed server timed out and has been sleeping
for some time. The client is attempting to connect to a new
server.

netinfo failure, aborting A server failure occurred during writing. As a result, the client
aborted the operation, rather than sleeping and retrying.

netinfo sleeping The client attempted to reconnect to a server and failed.
multi_call timeout, sleeping The client attempted to reconnect to a server, and none of

the messages to the potential servers received a response.
(The terminology here is inconsistentÐthe request was sent
by manycasting, but the message says "multi_call.") Once
the client receives a response, it displays the "netinfo
waking" message.

netinfo waking The client established a connection after a failure.

Figure 2: Common NetInfo sleeping and timeout messages

BACKING UP THE NETINFO DATABASE
A NetInfo database can be made up of more than one file. For example, in
the network.nidb directory is a file called Collection (or possibly
collection if you're using a release prior to 3.0), and zero or more
ªextensionº files called extension_n, where n is an integer. The NetInfo
database is made up of all of these files.

This is very important to remember when you make backups of a NetInfo
database. If you use an incremental backup technique, the backup
created might be incompleteÐit might not contain all the extension files,
for example. This complicates restoring the database from the backup. A
common mistake is to restore an .nidb from incremental dump tapes.
dump doesn't know how to delete old files, so you can end up with extra
extension_n files. These extra files confuse netinfod.
If you use incremental backups, we recommend backing up the NetInfo
databases separately using, for example, tar or cpio.
Besides using tar or cpio to copy a .nidb directory, you can use a new
feature of nidump, first available in Release 3.0: raw nidump. This
feature allows you to obtain the contents of a NetInfo directory hierarchy
in ASCII text format. Here's an example:
sabre-26% nidump -r /localconfig .
name = localconfig;
CHILDREN = ({
 name = NetWare;
 enable = YES;
}, {
 name = keyboard;
 keymap = /NextLibrary/Keyboards/USA;
}, {
 name = language;
 language = English;
}, {
 name = screens;
 _writers = (smarco, hkabir);
 CHILDREN = ({
 name = NeXTdimension;
 active = 1;
 bounds = "0 1120 0 832";
 slot = 2;
 unit = 0;
 }, {

 name = MegaPixel;
 active = 1;
 bounds = "1120 2240 0 832";
 slot = 0;
 unit = 0;
 });
});

This output shows four directories in /localconfig: NetWare, keyboard,
language, and screens. The /localconfig/screens directory, for
example, has two properties, name and _writers. The _writers property
in turn has two values, smarco and hkabir.
Because nidump -r provides information for a directory and all contained
directories, you could conceivably use it as a backup tool. Be very careful,
though, when reloading using niload -r. Experiment on a small directory
in a test domain first so you understand fully what will happen.
(Explaining exactly what happens under all circumstances is beyond the
scope of this article.)

RECOVERING FROM DISASTERS
There are three types of disasters to discuss:
· A NetInfo database is destroyed.
· The only clone of a domain on a given subnet becomes unavailable for

a long time, perhaps because its host computer's power supply fails.
· The master NetInfo server's computer fails catastrophically.
In the first case, a destroyed database, the easiest thing to do is to
restore the database from your backups. Be sure to do this in single-user
mode
with NetInfo shut down.

If restoring in single-user mode is impossible, remove any vestiges of the
.nidb directory you're going to restore, start up the computer, restore the
database, and reboot the computer. This procedure ensures there's no
netinfod trying to work with a corrupted or partial database.
In the second scenario, if a clone fails, the easiest thing to do is to build a
new clone. See the NEXTSTEP Networking and System Administration
manual for details.
For the third case, failure of the master server computer, see Cottle, ªThe
Crash of the Master NetInfo Server,º 1993.

Note: The document references in this and other articles in this issue
refer to the books and articles listed in ªNEXTSTEP Networking
References.º

